РЭМ с термоэлектронным катодом

РЭМ с термоэлектронным катодом предназначены для исследования массивных объектов с разрешением от 70 до 200 A°. Ускоряющее напряжение в РЭМ можно регулировать в пределах от 1 кВ до 30 – 50 кВ.

Устройство такого РЭМ показано на рис.9. При помощи 2 или 3 магнитных электронных линз (ЭЛ) на поверхность образца фокусируется узкий электронный зонд. Магнитные отклоняющие катушки развёртывают зонд по заданной площади на объекте. При взаимодействии электронов зонда с объектом возникает несколько видов излучений (рис.10) – вторичные и отражённые электроны; электроны, прошедшие сквозь объект (если он тонкий); рентгеновское тормозное излучение и характеристическое излучение; световое излучение и т. д.

Любое из этих излучений может регистрироваться соответствующим коллектором, содержащим датчик, преобразующий излучение в электрические сигналы, которые после усиления подаются на электроннолучевую трубку (ЭЛТ) и модулируют её пучок. Развёртка пучка ЭЛТ производится синхронно с развёрткой электронного зонда в РЭМ, и на экране ЭЛТ наблюдается увеличенное изображение объекта. Увеличение равно отношению высоты кадра на экране ЭЛТ к ширине сканируемой поверхности объекта. Фотографируют изображение непосредственно с экрана ЭЛТ. Основным достоинством РЭМ является высокая информативность прибора, обусловленная возможностью наблюдать изображение, используя сигналы различных датчиков. С помощью РЭМ можно исследовать микрорельеф, распределение химического состава по объекту, р—n-переходы, производить рентгеноструктурный анализ и многое другое. Образец обычно исследуется без предварительной подготовки. РЭМ находит применение и в технологических процессах (контроль дефектов микросхем и пр.).

 

Высокая для РЭМ PC реализуется при формировании изображения с использованием вторичных электронов. Она определяется диаметром зоны, из которой эти электроны эмиттируются. Размер зоны в свою очередь зависит от диаметра зонда, свойств объекта, скорости электронов первичного пучка и т. д. При большой глубине проникновения первичных электронов вторичные процессы, развивающиеся во всех направлениях, увеличивают диаметр зоны и PC падает. Детектор вторичных электронов состоит из ФЭУ и электронно-фотонного преобразователя, основным элементом которого является сцинтиллятор с двумя электродами – вытягивающим в виде сетки, находящейся под положительным потенциалом (до нескольких сотен в), и ускоряющим; последний сообщает захваченным вторичным электронам энергию, необходимую для возбуждения сцинтиллятора. К ускоряющему электроду приложено напряжение около 10 кВ; обычно он представляет собой алюминиевое покрытие на поверхности сцинтиллятора. Число вспышек сцинтиллятора пропорционально числу вторичных электронов, выбитых в данной точке объекта. После усиления в ФЭУ и в видеоусилителе сигнал модулирует пучок ЭЛТ. Величина сигнала зависит от топографии образца, наличия локальных электрических и магнитных микрополей, величины коэффициента вторичной электронной эмиссии, который в свою очередь зависит от химического состава образца в данной точке. Отражённые электроны регистрируются полупроводниковым (кремниевым) детектором. Контраст изображения обусловлен зависимостью коэффициента отражения от угла падения первичного пучка и атомного номера вещества. Разрешение изображения, получаемого «в отражённых электронах», ниже, чем получаемого с помощью вторичных электронов (иногда на порядок величины). Из-за прямолинейности полёта электронов к коллектору информация об отдельных участках, от которых нет прямого пути к

Ссылка на основную публикацию
Adblock detector