Для высокочастотного и реактивного ионного распыления используют как обычные диодные,

Для высокочастотного и реактивного ионного распыления используют как обычные диодные, так и магнетронные системы.

Высокочастотное распыление начали применять, когда потребовалось наносить диэлектрические пленки. В предыдущей главе предполагалось, что распыляемое вещество металл. При этом ударяющийся о мишень ион рабочего газа нейтрализуется на ней и возвращается в вакуумный объем рабочей камеры.

Если же распыляемый материал диэлектрик, то положительные ионы не нейтрализуются и за короткий промежуток времени после подачи отрицательного потенциала покрывают слоем мишень, создавая на ее поверхности положительный заряд. Поле этого заряда компенсирует первоначальное поле мишени, находящейся под отрицательным потенциалом, и дальнейшее распыление становится невозможным, так как ионы из разряда не притягиваются к мишени.

Для того чтобы обеспечить распыление диэлектрической мишени, приходится нейтрализовать положительный заряд на ее поверхности подачей высокочастотного (ВЧ) переменного потенциала. При этом в системе распыления, которая представляет собой диодную систему (рис. 3.9) с катодом 2, окруженным экраном 1 (анодом может служить вакуумная камера), происходят следующие процессы.

Так как в плазме положительного столба 4 содержатся равные количества ионов и электронов, при переменной поляризации мишени во время отрицательного полупериода (рис. 3.9а) она притягивает ионы 3. Ускоренные ионы бомбардируют и распыляют диэлектрическую мишень, одновременно передавая ей свой заряд. При этом мишень накапливает положительный заряд, и интенсивность распыления начинает снижаться. Во время положительного полупериода (рис. 3.9б) мишень притягивает электроны 5, которые нейтрализуют заряд ионов, превращая их в молекулы 6. В следующие отрицательный и положительный

Ссылка на основную публикацию
Adblock detector