РАДИАЛЬНЫЕ НЕЙРОННЫЕ СЕТИ

Многослойные нейронные сети, представленные в предыдущих разделах, выполняют аппроксимацию функции нескольких переменных путем преобразования множества входных переменных x \in R^Nв множество выходных переменных y \in R^M. Cигмоидальная функция активации по своему характеру осуществляет аппроксимацию глобального типа. В результате ее нейрон, который был однажды «включен» (после превышения суммарным сигналом определенного порогового значения), остается в этом состоянии при любом значении сигнала, превышающем данный порог. Поэтому преобразование значения функции в произвольной точке пространства выполняется объединенными усилиями многих нейронов, что и объясняет название глобальная аппроксимация.

Другой способ отображения входного множества в выходное заключается в преобразовании путем адаптации нескольких одиночных аппроксимирующих функций к ожидаемым значениям, причем эта адаптация проводится только в ограниченной области многомерного пространства. При таком подходе отображение всего множества данных представляет собой сумму локальных преобразований. С учетом роли, которую играют скрытые нейроны, преобразования составляют множество базисных функций локального типа. Выполнение одиночных функций (при ненулевых значениях) регистрируется только в ограниченной области пространства данных — отсюда и название локальная аппроксимация.

Ссылка на основную публикацию
Adblock detector